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Abstract 

 

Learning about the causal structure of the world is a fundamental problem for human cognition. Causal 

models and especially causal learning have proved to be difficult for Large Models using standard 

techniques of deep learning. In contrast, cognitive scientists have applied advances in our formal 

understanding of causation in computer science, particularly within the Causal Bayes Net formalism, to 

understand human causal learning. In the very different tradition of reinforcement learning, researchers 

have described an intrinsic reward signal called “empowerment” which maximizes mutual information 

between actions and their outcomes. “Empowerment” may be an important bridge between classical 

Bayesian causal learning and reinforcement learning and may help to characterize causal learning in 

humans and enable it in machines.  If an agent learns an accurate causal world model they will necessarily 

increase their empowerment, and increasing empowerment will lead to a more accurate causal world 

model. Empowerment may also explain distinctive empirical features of children’s causal learning, as 

well as providing a more tractable computational account of how that learning is possible. In an empirical 

study, we systematically test how children and adults use cues to empowerment to infer causal relations, 

design effective causal interventions and appropriately generalize to new contexts.   

 

Learning about the causal structure of the world is a fundamental problem for human cognition, and 

causal world models are central to intuitive theories. Such models allow wide generalization from limited 

data. Current large language models (LLMs), despite impressive progress in other areas, have very 

limited abilities to learn about causation or to perform genuine causal inference (Bender et al., 2021; Jin 

et al., 2024; Lewis & Mitchell, 2024). The inferential abilities they do display depend on the fact that they 

detect patterns in text and pictures that are generated by causal model-building humans (Yiu, Kosoy & 

Gopnik, 2024; Yiu et al., 2024). Such a model might predict that the words “fire” and “smoke” are 

associated without any conception that fire causes smoke.  In contrast, even very young children can and 

do spontaneously construct novel causal models of the world around them (e.g., Cook et al., 2011; 

Gopnik et al., 1999, 2004; Schulz & Bonawitz, 2007).  

 

Where do these models come from in humans and how is this kind of learning possible? Over the last 

twenty years or so, cognitive scientists have applied advances in our formal understanding of causation in 

philosophy and computer science to understand human causal learning. In particular, researchers have 

used the Causal Bayes Net formalism which relates directed acyclic causal graphs to patterns of 

conditional probability, interventions and counterfactuals in systematic ways (Pearl, 2000; Spirtes, 

Glymour & Scheines, 2000). It provides a natural way to describe both causal models and the patterns of 

data they generate.  

 



The Bayes net formalism assumes an “interventionist” account of causation – roughly, variable X is 

causally related to variable Y if an intervention changing the value of X would lead to a change in the 

value of Y. This has also become a dominant account of causality in philosophy. Causation is distinctive, 

on this view, because it allows for successful action. Simply observing correlations or associations 

between events may allow you to predict one event from another. But an intervention to produce one 

event will only lead to another if there is a causal relation between them. For example, yellow nicotine 

stained fingers, as well as smoking, may be correlated with lung cancer, and you might predict that people 

with yellow fingers are more likely to develop cancer. But intervening to wash off hands won’t affect the 

cancer while intervening to stop smoking will. The Bayes net formalism allows you to appropriately 

predict the consequences of interventions on variables as well as predicting the association between them. 

 

This allows the reverse Bayesian inference, at least in principle – from the pattern of interventions and 

associations it should be possible to infer the causal model that was most likely to have generated that 

data. This approach to causal learning is part of a broader Bayesian approach to learning in developmental 

cognitive science (for a recent review see Ullman & Tenenbaum, 2020). Empirically, causal learning in 

children is remarkably well captured by this formalism (for reviews see Gopnik & Wellman, 2012; 

Gopnik & Bonawitz, 2014; Goddu & Gopnik, 2024). Given a pattern of data, even preschool children 

infer the correct causal hypothesis. 

 

From a computational perspective, however, inferring causal models from evidence, like many other 

kinds of Bayesian inference, proves to be intractable – the space of possible hypotheses is too large. 

Various computational techniques have been used to try to deal with this problem, particularly sampling 

methods, and there is some evidence that young children use similar methods (Bonawitz et al., 2014a, 

2014b). but the search problems remain challenging. Another approach might be to suggest that potential 

causal models are strongly constrained by prior innate “core knowledge” (e.g., Spelke, 2022). Although 

this might help address the search problem, it also undermines one of the major advantages of causal 

learning. Causal learning is so valuable precisely because it allows us to go beyond innate knowledge and 

learn about causal structure that may be counter intuitive – such as the workings of a TV remote or a 

smart phone, or eventually of scientific physics or psychology. 

 

Another challenge for both Bayesian approaches and the classic “deep learning” algorithms that drive 

large language models involves the role of active exploration and experimentation in causal learning. 

Children are not simply passive consumers of data. Instead from very early on they actively seek out 

evidence that is relevant to the causal problems they are trying to solve, and this exploration plays an 

important role in their solutions to those problems. There has recently been extensive and elegant work 

showing just how motivated children are to experiment and explore, and how intelligently they do so 

(e.g., Schulz, 2012; Giron et al., 2023). Similarly, in formal science, experimentation is the canonical way 

to discover causal structure.  But, with a few exceptions, (e.g., Eberhardt & Spirtes, 2007) there have not 

been computational accounts of how this kind of active intervention and experimentation takes place and 

how it allows causal inference  

 

However, in parallel, an apparently quite different kind of learning mechanism – reinforcement learning – 

has become increasingly influential in neuroscience and computer science, particularly when combined 

with modern “deep” machine learning (Sutton & Barto, 2018; Dayan & Balleine, 2002). For example, 



deep reinforcement learning has been the key to DeepMind’s accomplishments in mastering Go and 

Chess (Silver et al., 2018).  

 

As the philosopher James Woodward, among others, has pointed out, classical reinforcement learning 

might be thought of as a very specific and narrow form of causal learning (Woodward, 2007, 2023). In 

particular, it relates the specific actions an agent performs on the world – their interventions – to specific 

outcomes, in the form of external rewards. This basic structure is similar to the basic structure of causal 

relations on the interventionist account underlying the causal Bayes net formalism. Moreover, RL 

contrasts with other types of learning that are more purely associative, such as classical conditioning or 

neural network learning mechanisms. Associative learning captures correlations between variables and 

allows predictions about those variables, but doesn’t allow a special role for interventions, and so is 

further removed from causal learning. 

 

However, reinforcement learning is much narrower in application than causal learning more generally, it 

typically applies only to the agent’s own actions and to the rewards that follow those actions. More 

importantly, the basic motivational structure of reinforcement learning and causal learning are very 

different. Reinforcement learning is motivated by utilities – the attempt to maximize external rewards. 

Classically, causal learning is epistemically motivated – it involves approximating the true structure of the 

world. It is true that ultimately causal knowledge allows effective action and decision-making, and so 

increases utilities. But this is a long term and indirect effect. In the Bayesian framework, decision-making 

and utility calculations are layered on top of the fundamental epistemic project (as in “causal decision 

theory”). The reverse is true in reinforcement learning – RL agents may try to learn about the 

environment but they only do so in service of the fundamental utility project – that is, they learn in order 

to maximize further rewards later on. 

 

Although RL methods can be very effective in relatively low-dimensional and fixed environments such as 

go or chess, especially with dense reward signals, they have much more difficulty in the high-dimensional 

and open-ended environments that are characteristic of human causal learning. In particular, RL systems 

face consistent difficulties in balancing exploitation -- the fundamental utilitarian motivation of 

maximizing reward, and exploration -- the more epistemic motivation of learning about the structure of 

the environment (e.g., Sutton & Barto, 2018; Cohen et al., 2007). In the long run, exploration will lead to 

more effective action and reward, but it requires the agent to forego reward in the short run. These 

problems arise even in very simple “bandit tasks” where agents are only required to choose between 

actions with known or unknown outcomes. Choosing the known option allows an agent to be sure of 

reward, but the unknown option will be more informative and lead to more knowledge and so to more 

effective action in the long run.  

 

One approach to solving these problems has been to propose systems that seek internal epistemic rewards 

in addition to the classical external rewards. These systems implement the intrinsic epistemic motivation 

of classical causal learning in an RL framework. Several types of intrinsic rewards have been proposed in 

the literature. They include a variety of curiosity-based rewards, particularly measures of information 

gain, entropy and novelty (Oudeyer et al., 2007; Schmidhuber, 2010; Pathak et al., 2017). These rewards 

do seem to increase the exploratory efficacy of reinforcement learning systems. Moreover, there is 



evidence that children and even infants also seek out such intrinsic rewards, particularly information gain 

(Schulz, 2012; Kidd & Hayden, 2015).  

 

However, it is still difficult to sufficiently constrain these systems. For example, a classic failure mode for 

systems that seek out information gain is the “noisy TV” problem (Schmidhuber, 2010). Such systems 

will be captured by random noise like TV static. Seeking novelty and information gain by themselves 

doesn’t seem to be adequate to understand the environment effectively in a way that supports action. 

  

A different approach uses “empowerment” as an intrinsic epistemic reward (Klyubin et al., 2005, 2008). 

Interestingly “empowerment” originally was formulated in the evolutionary computation and artificial life 

literature as part of an attempt to specify how intelligence might emerge even in very simple organisms. 

The crucial idea is that intelligence involves systematic relationships between “sensors” -systems for 

sensing and perceiving the environment, and “actuators” -systems for acting on the environment. A 

number of evolutionary theorists have pointed out that brains emerged in concert with the emergence of 

animals with coordinated perceptual and motor systems – such as eyes and claws -- in the Cambrian 

explosion. This contrasts, with complex, large and successful organisms in the earlier Ediacaran period 

that do not have these features, and do not have brains. (Godfrey-Smith, 2020: Jablonka & Lamb 2014)). 

Empowerment described how sensors and actuators could be coordinated in an adaptive way.  

 

In empowerment, an agent maximizes the mutual information between its actions and their outcomes, 

regardless of the reward value of those outcomes. In other words, the system is rewarded if variation in an 

action systematically leads to parallel variation in the outcome so that the value of the action predicts the 

value of the outcome. Simultaneously, the system is also rewarded for maximizing the variety of actions it 

takes, ensuring that it explores the widest range of possible actions and outcomes. Thus seeking 

empowerment leads to both actions that allow more control of the environment and more variable actions.  

 

Recently this idea has been applied to a variety of reinforcement learning problems (Du et al., 2020; Zhao 

et al., 2019; De Abril & Kanai, 2018). By endowing RL agents with empowerment as an intrinsic reward 

those agents can explore and represent the environment more effectively. Rather than simply seeking out 

novelty or information, such a system will seek out exactly the relations in the world that involve the 

closest match between actions and outcomes – the most controllable relations. This means that it will 

discover the relations that will be most likely to be useful for a wide range of future goal-directed actions. 

If I discover, for example, that moving a stick systematically changes the position of objects that it 

contacts, I can later pick up the stick to draw an out of reach object towards me. In fact, infants seem to 

learn to use sticks in just this way (Uzgiris & Hunt, 1975). 

 

Although they come from different traditions, we argue that causal learning and empowerment gain are 

intimately related. In particular, if an agent learns an accurate causal model of the world they will 

necessarily increase their empowerment, and, vice versa, increasing empowerment will lead to a more 

accurate (if implicit) causal world model.  

 

This claim is rooted in the peculiar nature of causation. In the past, we and others have argued that it is 

helpful to think of causal learning as an “inverse problem” (Gopnik et al., 2004). An inverse problem 

involves inferring the structure of the external world from the data that world generates. A classic 



example is the way a visual system infers the structure of the three-dimensional world from retinal images 

or pixels. Other examples might include the way that we infer beliefs and desires from behavior in 

“theory of mind”, infer neural structure from fMRI evidence in cognitive neuroscience, or infer atomic 

structure from cloud chamber traces. In all these cases we assume that there is, in fact, some single 

distinctive structure in the outside world that we are trying to reconstruct. A God’s eye view of the 

universe would discover something corresponding to the 3-d structure or psychological structure or neural 

structure or atomic structure that we are trying to reconstruct. This structure is independent of the agents 

who are trying to understand it. Bayesian approaches in cognitive science essentially formalize these 

inverse problems in a probabilistic way. 

 

However, the interventionist accounts that underlie causal Bayes nets (Woodward, 2007; Pearl, 2000; 

Spirtes, Glymour & Scheines, 2000) imply a different relation between agents and the world. The 

asymmetries between cause and effect that are central to interventionist accounts of causation are, 

notoriously, hard to be find in physics, at least at the micro level. Instead, our notions of causation are 

rooted in the idea that causal relations are precisely those external relations that support an agent’s 

interventions.  Philosophers and computationalists in this tradition define causal relations as those 

relations such that intervening to alter the value of a cause variable will lead to a corresponding change in 

the effect variable – in short, those relations where actions predictably produce outcomes. The ideal 

interventions that underpin causal inference are not identical to the intentional actions of actual agents but 

they are closely related, and in many circumstances agents’ intentional actions will also serve as ideal 

interventions (see Woodward, 2020), and so pick out causal relationships in the world. Discovering such 

relations between interventions and outcomes is also the fundamental idea behind empowerment. But 

there may not be any single God’s eye view agent-independent causal structure analogous to, say, 3-d 

spatial structure or atomic structure. 

 

The philosopher Peter Godfrey-Smith (2009), among others has argued for “causal pluralism” – where 

many ontologically disparate phenomena can all support causal interventions. On this view there is 

nothing analogous to the spatial structure of the 3-d world in the causal case. Rather there are many quite 

different relationships in the world, ranging from the intuitive physical relations that support “billiard-

ball” causation to the belief-desire relationships of intuitive psychology, to the highly counter-intuitive 

relations of physics, that all happen to systematically support causal interventions. Again these are 

precisely the relations of control that would produce the greatest increases in empowerment. Maximizing 

empowerment will lead to the discovery of causal relations, and vice-versa. 

 

A further distinctive feature of empowerment, is that it can have both “mind to world” and “world to 

mind” directions of fit. It is possible to maximize an agent’s empowerment by increasing its knowledge 

about how the world works (matching the mind to the world as in science). This is the classic picture of 

causal learning. However, it is equally possible to maximize empowerment by increasing an agent’s skill 

and control over the world (matching the world to the mind as in engineering). This is more like the 

orientation of classic reinforcement learning.  

 

However, whether we think in terms of science or engineering, the basic structure of causal relations will 

be the same, intervene systematically on X to systematically change the value of Y.  This is well captured 

by the notion of empowerment. Of course, in more abstract and conceptual cases, the interventions may 



be theoretical rather than actual – to say that the moon causes the tides is to say that if we could alter the 

position of the moon the tides would also alter, even if this intervention isn’t actually possible. But, if a 

relation is genuinely causal this sort of intervention should at least be conceptually possible. Moreover, 

this distinguishes causal relationships from other relationships such as spatial, geometric or logical 

relationships. And, in practice, the test for whether we have discovered causal relations is to perform 

experiments –to determine whether experimentally varying one variable will systematically predict the 

value of another, that is, precisely to look for high mutual information between interventions and 

outcomes. 

 

Thinking about empowerment might also help us understand the psychology of causal learning.  

A recent paper suggests that adult’s exploration of a video-game like environment can be well 

characterized by empowerment (Brändle et al., 2023) and we have shown that this is also true for children 

(Du et al., 2023). But the empowerment approach more generally captures important features of early 

causal knowledge and learning and helps to explain a wide range of developmental findings.  

 

Looking-time studies suggest that very young infants perceive some particular relations in intuitive 

physics that support causal inference, such as the relations of movement and collision in “billiard-ball” 

causality (Leslie, 1982). However, the development of causal concepts more broadly is initially closely 

linked to actual goal-directed actions on the world and their outcomes. We have suggested (Goddu & 

Gopnik, 2024, following Woodward, 2000, 2020) that both in phylogeny and ontology, causal 

understanding moves from a first-person perspective, to a third-person perspective to an impersonal 

perspective. Reinforcement learning, which is found in almost all intelligent animals, represents a causal 

relation between the animal’s own actions and their outcomes. Imitation learning, which is found in some 

non-human animals in limited ways, but is ubiquitous in human infants, represents a causal relation 

between another animals’ actions and outcomes. The sort of impersonal causal understanding in science 

represents causal relations in the world independent of actual actions, though crucially supporting such 

actions in principal. Empowerment may be applied to all three types of relations. 

 

Is there empirical evidence that humans including young children seek something like empowerment, and 

that this contributes to their causal learning? In the 70’s, interestingly in the context of thinking about 

operant conditioning and reinforcement learning, a series of papers suggested that even very young 

infants are indeed rewarded by something like empowerment. In classic studies of “conjugate 

reinforcement” Rovee-Collier (1979) tied a ribbon from a crib mobile to the infant’s foot, so that kicking 

made the mobile move.  Infants as young as 3 months old systematically acted to make the mobile move, 

varying their actions and observing the correlation between those actions and the behavior of the mobile. 

There were similar results in studies where infants could make a mobile move or activate a pattern of 

lights by turning their heads on a pressure sensitive pillow (Watson, 1972; Papousek & Papousek, 1975).  

Moreover, these actions could not simply be explained by classic reinforcement learning with the 

mobile’s motion as a reward. Infants would learn to turn their heads or kick and would continue to act to 

do so, even though they no longer looked at the mobile or the lights, aside from a brief glance to check 

that their action was effective. Infants varied their actions and observed their results rather than simply 

converging on a single effective action. In addition, infants smiled and cooed when their actions 

consistently led to an effect, but not when that effect simply occurred independently of their actions 

(Watson, 1972). A more recent study with this methodology shows that infants consistently alter their 



actions on the mobile in a way that increases the contingency of their actions, again unlike classical 

reinforcement learning (Sloan et al., 2023). In fact, Rovee-Collier described her results precisely as an 

empowerment reward: “The control which the infants have gained over the consequences of their own 

actions seems to have become the reward, rather than the specific consequences per se.” (Rovee-Collier, 

1979).  

 

In “conjugate reinforcement” infants are acting to maximize the empowerment of their own actions – 

their causal understanding has a first-person perspective. We know that from early in infancy children 

also represent the goal-directed actions of others and distinguish them from other kinds of events and 

movements (e.g., Woodward, 1998, 2009). Moreover, they map the goal-directed actions of others on to 

their own actions (Meltzoff, 2007). This is an important feature of human causal learning. It distinguishes 

it from other types of learning, such as classic reinforcement learning, which only concern an agent’s own 

actions, and also distinguish it from learning in other animals (Taylor et al., 2014). From early in life, 

then, children have the cognitive and conceptual structures in place to discover empowerment relations 

between actions and outcomes, both their own and those of others. 

 

From at least 24 months and probably earlier, children make genuine causal inferences by observing the 

correlations between goal-directed actions – their own or others—and outcomes. However, until around 

age 4, they do not make similar inferences from simple correlations between events (Wasimeyer & 

Meltzoff, 2017; Bonawitz et al., 2010; Meltzoff, Waismeyer & Gopnik, 2012). Suppose a 24- month-old 

sees a human hand repeatedly push a toy car against a block A, which causes a light to go on. Pushing the 

car against another block B does not have this effect.  Now we ask the infant to make the light appear. 

Infants will reproduce the correct action on A in order to make the light go, but not the action on B. 

However, they will not do this if they simply see the car move on its own and cause the effect. This is true 

even though they will look towards the light in this condition, suggesting that they have learned the 

correlation between the motion of the car and the light (Meltzoff, Waismeyer & Gopnik, 2012). In short, 

toddlers appear to detect empowerment relations between actions and outcomes and use those relations to 

infer causal relationships that determine their own future interventions. They do not do this based on 

correlations among events that do not involve actions and outcomes. 4-year-olds do infer new 

interventions from correlations alone, but this ability seems to depend on their earlier learning through 

goal-directed action. 

 

Empowerment also naturally applies to children’s early exploratory play (Chu & Schulz, 2020). Even 

infants characteristically play by varying their actions on an object and observing the results – hence the 

perennial popularity of toys like rattles and busy boxes that afford such empowering actions. 

Empowerment based reinforcement learning, unlike Bayesian inference, also provides a natural way to 

characterize such experimental actions, they are precisely what you would expect from a system that was 

trying to act to maximize empowerment. 

 

Thinking of causal learning in terms of empowerment may also help to resolve some of the search 

problems. Maximizing empowerment would not require the sort of search through a high-dimensional 

hypothesis space that is so challenging for Bayesian inference.  Unfortunately, precisely calculating 

mutual information itself poses problems of tractability – but some very recent approximation methods 

make such calculations more feasible (e.g., Zhao et al., 2020). Children might also begin by simply 



looking for correlations between actions, their own and others, and the outcomes that follow them, rather 

than fully calculating mutual information.  

 

If children are maximizing empowerment they would have a mechanism for independently discovering 

causal relations that are not specified innately, even without requiring the full apparatus of Bayesian 

causal inference. They might look for relations that have the feature of mutual information between their 

own actions and those of others and outcomes, like the relations between sticks and distant toys. This 

might then allow them to build up a repertoire of basic causal arrows that can then be combined to build 

more complex models.  

 

Testing Empowerment Empirically – The Star Machines 

 

We described a number of developmental studies and observations suggesting that children may indeed 

be seeking empowerment gain in their everyday play and exploration. But could we test this idea more 

systematically? Empowerment involves two factors. Actions must lead to effects in the environment – 

they must enable control, but simply seeking control might lead you to mindlessly repeat the same action 

with a deterministic outcome over and over. To obtain high empowerment, actions must also be variable, 

and this variability should be correlated with variability in the environment. Again this contrasts with 

simply seeking novelty or information in the environment. Just as the failure case for simple control 

would be a deterministic loop, the failure case for simple novelty seeking would be to pursue randomly 

generated novel outcomes, as in the “noisy TV” case we described earlier. To maximize empowerment, 

and to explore the causal structure of the environment most effectively, you should seek a combination of 

control and variability.   

 

In the following experiments, we systematically contrast empowerment gain, which involves both 

controllability and variability, with novelty, that is simple variability, on the one hand, or efficacy, that is 

simple control, on the other. A rotary dimmer dial is more empowering than a two-way light switch 

because it allows fine-tuned control over many more distinct brightness levels, rather than just two fixed 

states. However, if that same rotary dial functioned like a wheel of fortune, randomly determining an 

arbitrary brightness level with each turn, it would be less empowering than the basic light switch because 

despite providing a variety of outcomes, it lacks predictable control. Similarly, the rotary dial would yield 

more causal knowledge than the switch or the wheel of fortune. Will children and adults differentiate 

these cases and make appropriate causal inferences, interventions and generalizations as a result? Will 

they prefer events that afford empowerment over similar events with lower controllability or variability? 

We also ask whether children and adults have different preferences and make different interventions in 

some contexts and not others.  

 

Study Method 

 

To assess if humans appreciate this distinction, we designed a study to examine whether children 

recognize and prefer control and / or variability when they make causal generalizations and interventions. 

We introduced 80 five- to ten-year-old children (μ = 7.52 years, SD = 1.68 years) and 120 adults (μ = 

27.57 years, SD = 4.30 years) to three machines, each designed to generate outcomes reflecting 

variability, controllability, or a combination of both. In a cover story participants were told that “the elf 



boss wants you to make stars with these machines”. The machines were set up so that placing an object, 

initially a star, in one of several slots produced another different object (see Figure 1). 

 

(a) Demonstration Phase 

 

We first demonstrated how each machine produced outcomes. One machine (the purely controllable 

machine) always produced the same star size, regardless of which slot the demonstrator used. It either 

generated a large star or a medium star (60 adults and 46 children were randomly assigned to observe big 

stars from this machine, while the rest were assigned to the medium-star condition). Another machine (the 

controllable and variable machine) had a perfect correlation between slot size and output size: the big slot 

produced a big star, the medium slot produced a medium-sized star (unchanged from the input size), and 

the small slot produced a small star. The third machine (the purely variable machine) generated star sizes 

randomly, with no correlation to the slot size. The machines were otherwise identical, and the color and 

position of the machines were randomized across participants.  

 

Participants were not told about the underlying causal structure of the machines, but had to infer them by 

observing the narrator drag stars into different slots on each machine. Every time a star was generated by 

the machine, a narrator commented on the change in size compared to the input in one of the following 

ways: “Look it becomes smaller!", “Look it becomes bigger!", “Look it is the same!". All participants 

watched three outputs per slot, amounting to twenty-seven outcomes observed across the three three-slot 

machines. Figure 1 presents an example of what the participants saw in the demonstration. To eliminate 

participants' need to recall the outcome patterns generated by the three machines, the star outputs 

remained visible on the screen throughout the experiment. 
 

 
Figure 1. Three machines characterized by the controllability and variability of their outputs. (left) The purely controllable machine generates a 

single, deterministic output across all slots. (middle) The controllable and variable machine produces three distinct outputs, each reliably 

corresponding to slot size. (right) The purely variable machine generates three different outputs in a completely stochastic manner, with no 

predictable pattern. The color and order of the machines were fully randomized across participants. 

 

(b) Generalization Tests 

 

After observing the demonstration, participants were asked to design interventions to solve new causal 

problems. These interventions required generalization at various levels of abstraction. The first level of 

abstraction involved generalizing the structure of the machine to a new output value. Participants were 

introduced to an “extra small" slot that was newly appended to each of the three machines and were asked 

to generate an “extra small” star that would be smaller than those they had previously observed. The 

correct choice was the extra small slot in the variable and controllable machine (as opposed to the extra 

small slots in the other two machines; chance level = 1/3), as it was the only one that would reliably 

produce the new outcome.  



 

The second level of abstraction required generalization to a new object. Participants were given a new 

object, hats, and were told to make nine different-sized hats: three large, three medium and three small 

using any slot from any of the three machines (twelve slots in total). To make big hats, one could put hats 

in any of the four slots in the controllable machine if it exclusively produces large outcomes, and / or the 

large slot in the controllable and reliable machine (chance level = 5/12 if the former is true; chance level = 

1/12 if the latter is true). To make medium-sized hats, one could pass hats into any of the four slots in the 

controllable machine if it exclusively produces medium outcomes, and / or the medium slot in the 

controllable and reliable machine (chance level = 5/12 if the former is true; chance level = 1/12 if the 

latter is true). To make small hats, one could place hats into only the small or extra small slots in the 

controllable and reliable machine (chance level = 2/12). So the combined chance level of making 

different sized hats is 25% for participants in the condition where the controllable machine makes only 

big stars as well as in the condition where the controllable machine makes only medium-sized stars. 

 

The third level of abstraction demanded generalization from object size to a new perceptual dimension – 

brightness. Participants were given light bulbs and were told that the light bulbs could be made bright, 

sort of bright, sort of dim and dim with the machines. They were then asked to make a bright light bulb 

and a dim light bulb. This requires the same solution as making a big hat (chance level = 5/12 or 1/12) 

and a small hat (chance level = 2/12) in the previous problem. 

 

(c) Machine Preference 

 

The experiment concluded by asking participants which of the three machines they would keep if they 

were asked to “work to make new things” or if they could simply be “given more things to play with.” 

 

Study Results 

  

(a) Generalization  

 

When asked to generalize to a new output value by making an extra small star, 46.25% of children and 

80.83% of adults correctly selected the extra small slot on the variable and controllable machine (see 

Figure 2(a)). This is significantly above chance (1/3) for both children (p = .017) and adults (p < .001) on 

a binomial test. Chi-square tests show the variable and controllable machine was significantly preferred 

by both children (χ2(2) = 13.9, p < .001) and adults (χ2(2) = 166.4, p < .001). There was no significant 

difference between the other two machines. 

 

When asked to generalize to a new object by producing hats of different sizes, children selected the 

correct slots on the controllable machines 56.26% the time (SE = 3.35%) and adults 86.85% the time (SE 

= 1.90%) (see Figure 2(b)). Both children (t(79) = 9.03, p < .001) and adults (t(119) = 32.62, p < .001) 

performed significantly above chance level (25%). Across the nine trials, both groups showed a 

significant preference for the variable and controllable machine over the purely variable machine 

(children: z = 6.24, p < .001; adults: z = 15.02, p < .001) and over the purely controllable machine 

(children: z = 3.15, p = .001; adults: z = 9.30, p < .001). The preference for pure variability over pure 

controllability was significant only in children (z = -3.09, p = .002) but not in adults (z = -5.72, p < .001). 



 

When asked to generalize to a new perceptual modality by creating light bulbs that alter in brightness 

instead of size, children and adults again succeeded in selecting the appropriate slots in the controllable 

machines. In the condition where the purely controllable machine also made big objects only, 71.74% 

children and 76.67% adults successfully created bright light bulbs, significantly above the chance level of 

5/12 (binomial test, p < .001) (see Figure 2(c)(i)); in the condition where the purely controllable machine 

made medium sized objects, 58.33% children and 70% adults made bright light bulbs, also again 

significantly above the chance level of 1/12 (binomial test, p < .001) (see Figure 2(c)(ii)). Both children 

and adults (aggregated over the conditions where the purely controllable machine generates only medium 

outcomes or only large outcomes) showed significant preference for the variable and controllable 

machine over the other two machines on a Chi-squared test (children: χ2(2) = 10.2, p = 0.0061; adults: 

χ2(2) = 54.95, p < .001) (see Figure 2(c)(iii)). When making dim light bulbs, 48.10% children and 68.91% 

adults selected the correct slots, which again is significantly above the chance level of 2/12 (binomial test, 

p < .001). As in making bright light bulbs, both children and adults significantly preferred the variable 

and controllable machine on a Chi-squared test (children: χ2(2) = 17.4, p < .001; adults: χ2(2) = 108.12, p 

< .001). Across the trials, there was no significant difference in usage between the purely variable 

machine and the purely controllable machine. 

 

Even though the purely variable machine could generate the full range of outcomes demanded by the 

three generalization tasks, children and adults rarely used this machine because these outcomes are 

unpredictable and they have no control over them (20% and 5.04% respectively in making an extra small 

star; μ = 22.64%, SE = 2.22% and μ = 7.78%, SE = 1.24% in making nine different sized hats; μ = 

22.15%, SE = 3.31% and μ = 15.06%, SE = 2.32% in making bright and dim light bulbs). This highlights 

humans’ appreciation for controllability over variability – more specifically, the systematic variation 

between inputs and outputs – in generalization and designing interventions for novel outcomes. It is 

interesting, however, that children showed more of a preference for pure variability than adults. This may 

simply reflect the greater noise in the children’s responses, but it may also suggest that children are 

especially sensitive to information gain. 
 
(a) Extra small output      (b)(i) Big hats, controllable machine produces big objects 

 
(b)(ii) Big hats, controllable machine produces medium-sized objects (b)(iii) Medium-sized hats, controllable machine produces big objects 

 



(b)(iv) Medium-sized hats, controllable machine produces medium-sized objects (b)(iii) Small hats 

 
 

(c)(i) Bright light bulbs, controllable machine produces big objects  (c)(ii) Bright light bulbs, controllable machine produces medium-sized objects 

 
c(iii) Dim light bulbs 

 

 
Figure 2. Distribution of machine and slot preference across the three generalization tasks: (a) to a new output value (extra small star), (b) to a 

new object kind (hats), (c) to a new perceptual modality (brightness). 

 

(b) Preference 

 

When asked to select a machine to keep for work to make new kinds of things, the variable and 

controllable machine is most preferred (selected by 48.75% children and 75% adults), while the purely 

variable is least preferred (selected by 20% children and 66.7% adults) (see Figure 3, left). A Chi-squared 

test revealed that children favored the variable and controllable machine (z = 2.93), preferred the purely 

controllable machine less (z = -0.40, not significant), and avoided the purely variable machine (z = -2.53), 

p = .009. Adults showed an even stronger preference for the controllable and variable machine (z = 9.68) 

and the other two machines were significantly under-selected (z = -3.49 for the purely controllable 

machine and -6.20 for the purely variable machine, p < .001 for both). 

 

When asked to select a machine to keep for playing more, adults but not children continued to exhibit a 

strong preference for the controllable and variable machine (selected by 59.17% adults and 31.25% 

children) (see Figure 3, right). Children's choices were evenly distributed on a Chi-squared test (variable 

and controllable: z = -.39, variable: z = .32, controllable: z = .079). By contrast, adults still strongly 

preferred the variable and controllable machine (z = 6.00) to the purely variable machine (z = -3.10, p < 

.001) and the purely controllable machine (z = -2.90, p < .001). 



 

There was a significant shift in adults' machine preferences between the work and play contexts, χ2(2) = 

10.94, p = .012. Adults were significantly more likely to select the variable and controllable machine in 

the work context compared to the play context, χ2(1) = 5.68, p = .017, while their preference for the 

purely variable machine increased in the play context, χ2(1) = 8.65, p = .0033. There was no significant 

change in the selection of the controllable machine. Likewise, children demonstrated a significant shift in 

preference from controllability in the work context to variability in the play context, χ2(3) = 6.04, p = 

.014. Like adults, children were significantly more likely to select the variable and controllable machine 

in the work context compared to the play context, χ2(1) = 6.04, p = .014. At the same time their 

preference for the purely variable machine strengthened in the play context, χ2(1) = 5.04, p = .025. There 

is no difference in preference for the purely controllable machine between large and medium-sized 

outcomes in both children and adults, indicating that object size does not explain their preference. In 

summary, children and adults show a stronger preference for the controllable and variable machine in the 

work context and shift to prefer the purely variable machine more in the play context. 
 

 
Figure 3. Proportion of machine selections by children and adults in the work and play contexts. 

 

Study Discussion 

 

In a simple setup featuring otherwise identical systems with different levels of control and variability, we 

find that both children and adults can successfully leverage controllability and variability to design 

interventions that generate novel, unseen causal outcomes. Whether producing a star of a completely new 

size, creating new hats with different sizes, or adjusting a new perceptual dimension – the brightness of 

light bulbs – participants reliably selected the correct slots on the controllable and variable machine (and 

sometimes the controllable but not variable machine when the target outcome did not involve variation in 

value).  

 

To achieve various specific goals at different levels of generalization, children and adults needed to use a 

machine that embodied empowerment. They needed to not just observe the direct mapping between a 

single input and a single output, but also determine if variation in a slot systematically leads to parallel 

variation in the outcome, so that the action of putting an object into a slot predicts the value of the 

outcome. As we described above, this is the fundamental characteristic of causal relationships (Gopnik, 

2024). Notably, participants rarely relied on the variable but uncontrollable machine, even though this 

machine could generate the same diversity of outcomes as the variable and controllable machine. 

 

Explicit preferences for machine use in work versus play conditions further illustrate children's and adults' 

sensitivity to controllability. Children and adults showed a strong preference for the controllable and 

variable machine in goal-directed work, with adults showing a stronger preference. In contrast, the purely 



variable machine was more often chosen for play, possibly due to a desire to resolve uncertainty or find 

unpredictability appealing when there is no goal. Nevertheless, empowerment represented by controllable 

variability in this study, emerged as a key tool for goal-directed causal generalization and intervention. 

 

Conclusion 

 

In sum, we argue here that recent work on “empowerment” may help bridge Bayesian and RL approaches 

to learning and provide both empirical and theoretical insight into the crucial problem of learning the 

causal structure of the world. We also present a first set of experiments exploring this idea empirically.  
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